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ABSTRACT

We study the size and power properties of t-tests of parameter restrictions for newly-designed
methods that aim at reliably estimating risk premia in linear asset pricing models when the cross-
sectional dimension is large. By simulating a variety of empirically calibrated data generating
processes for sample sizes that are typically encountered in empirical work, we evaluate the finite-
sample performance of the test statistics for scenarios where the factor structure is (i) strong
and pervasive; (ii) spurious; (iii) weak/semi-strong and pervasive; (iv) weak/semi-strong and not
pervasive; and (v) sparse. PCA-based methods such as those of Lettau and Pelger (2020), Giglio
and Xiu (2021), and Giglio et al. (2022) work best when the factors are strong and pervasive, and
they continue to exhibit good finite-sample properties when the factors are spurious. However,
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and Mikusheva (2021) performs substantially better than the PCA-based estimators listed above.
In the case of sparse loadings or when the factors are semi-strong and not pervasive, none of the
candidate methods displays satisfactory finite-sample properties.

Keywords: PCA; Risk premium; Factor models; Two-pass methodology; Strong and weak factors;
Spurious factors; Local factors; Asset pricing tests.

JEL classification: C12, C38, C53, G12.
∗We gratefully acknowledge comments and suggestions from Eric Renault, and participants at Warwick Business

School, the Warwick Macro and International Economic Seminar, the Warwick-Turing Economics Data Science
Workshop, the 15th annual SoFiE conference. We also thank Stefano Giglio, Dacheng Xiu, Anna Mikusheva, and
Elisa Ossola for sharing their codes.



1 Introduction

Based on the theoretical arguments provided by Sharpe (1964), Merton (1973), and Ross (1976),

linear asset pricing models have laid the groundwork for understanding the relationship between

test assets’ expected returns and a set of risk factors - i.e, traded or nontraded factors that aim at

capturing the systematic risk that investors are subject to and cannot diversify away.

The most popular methodology for estimating risk premia is considered to be the two-step pro-

cedure of Fama and MacBeth (1973), which still remains the standard tool for cross-sectional asset

pricing. Despite its simplicity, this methodology potentially suffers from problems that have been

widely documented in the asset pricing literature. These shortcomings can be broadly grouped

into two categories. First, when factors are weak or completely spurious, the risk premia from

the second-pass method of Fama and MacBeth (1973) are undefined. (See Kan and Zhang (1999),

Kleibergen (2009) and Gospodinov et al. (2014), among others) Second, even if the factors were

to be strong and pervasive, there could still be substantial (global) model misspecification due, for

example, to the omission of important factors in the model. This type of model misspecification

would not vanish asymptotically, and it would need to be addressed by robustifying the risk pre-

mium inference against potential misspecification. (See Kan et al. (2013)) In the meanwhile, the

empirical asset pricing literature has come up with hundreds of factors (see the factor zoo of Harvey

et al. (2016)) that are deemed to be priced on a variety of test assets. This lends support to the

view that not all models can be correct at the same time and that model misspecification needs to

be taken seriously into account.

In light of these two challenges, and concurrently with easier access to bigger datasets over

time, new methods have been recently proposed for estimating risk premia when the number of

test assets is large. Traditionally, researchers have mostly focused on a reduced number of test

assets/portfolios to infer whether a factor is priced in the cross-section of asset expected returns.

From here, most of the emphasis, from a statistical standpoint, has been on large-T asymptotics.

More recently, several researchers have proposed large-T and large-N methods to accommodate a

large number of test asset returns in the analysis. (See, for example, Gagliardini et al. (2016)) In

addition to factor weakness and fixed model misspecification, accommodating a large cross-sectional

dimension in the analysis represents a major challenge for financial econometricians.
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In this paper, we consider five recent advances in large-N asset pricing: (i) the two-pass method-

ology of Gagliardini et al. (2016); (ii) the three-step procedure of Giglio and Xiu (2021); (iii) the

three-step method of Lettau and Pelger (2020); (iv) the four-split procedure of Anatolyev and

Mikusheva (2021); and (v) the supervised-PCA of Giglio et al. (2022). Our objective is to inves-

tigate the finite-sample performance of these methods by examining the size and power properties

of the t-tests of zero risk premia for realistic sample sizes. In our large-scale Monte Carlo simula-

tions, we consider a variety of empirically relevant scenarios with a particular focus on the following

cases: (i) all factors are strong; (ii) a spurious factor is included in the data generating process;

(iii) the strength of the factors decreases; (iv) the factor structure is sparse; and (v) the strength

and composition of the factors vary.

Our contribution to the literature is threefold. To our knowledge, we are the first to provide a

comprehensive comparison of the statistical properties of the aforementioned methodologies with

respect to a plethora of relevant scenarios. In other words, we analyze the statistical properties

of the t-tests associated with the various risk premium estimators that have been proposed in the

large-N literature. Particular emphasis is put on weak identification, which might undermine the

validity of standard statistical inference.

Second, differently from existing studies, we implement our Monte Carlo simulations by keeping

as close as possible to the actual features of the data. In doing so, we develop a general procedure

that can be easily applied to large data sets and generate artificial returns whose (large-N) cross-

sectional structure mimics the one observed in the data. In other words, we are careful in preserving

the factor structure of the residuals, which is often ignored in Monte Carlo designs that aim at

evaluating the statistical properties of the proposed estimators.

Third, we give researchers some practical recommendations for reliable risk premium inference.

In fact, our simulations indicate that no estimator enjoys satisfactory statistical properties in all of

the alternative scenarios that we consider. Therefore, we argue that the choice of a specific estimator

should be based on the relevant scenario at hand. In particular, we show that PCA-based estimators

perform well when the return factor structure is strong and pervasive (e.g., market factor) and

when the proposed factors are spurious. On the other hand, when the factors that drive returns are

semi-strong and pervasive (e.g., consumption factor), the split-sample method of Anatolyev and

Mikusheva (2021) seems to provide a rather reliable (although still not ideal) inference. Finally,
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we show that when returns are generated from sparse factors (i.e., factors associated with sparse

loadings) and when the strength and composition of factors vary heterogeneously in a large panel

of asset returns, none of the estimators analyzed in this study exhibit reliable statistical properties

in terms of size and power of the t-tests.

The rest of the paper is organized as follows. Section 2 describes the various large-N estimators

we consider in the paper. Section 3 reports a detailed description of realistic scenarios that a

researcher might encounter when dealing with the estimation of factors’ risk premia, and it provides

details on how we generate artificial returns. This section also highlights conditions under which

lack of identification arises and renders standard tools invalid. Our simulation results are in Section

4. Section 5 addresses a few issues that arise in the setting of Giglio and Xiu (2021). Section 6

concludes. Additional simulation results are provided in the Appendix and an online Appendix.

2 A Review of Recent Methods

This section provides an overview of the strategies that have been proposed in the asset pricing

literature to estimate risk premia when we have a large cross-section of assets. In section 2.1 we

discuss three methodologies in which observable factors are proxies for the unobservable latent

drivers of return. Next, section 2.2 discusses two approaches in which the factor structure of return

is observable.

2.1 PCA-based methods: Latent and observable factors

2.1.1 Three-pass methods: Giglio and Xiu (2021) and Giglio et al. (2022)

Giglio and Xiu (2021) and Giglio et al. (2022) (henceforth GX and SPCA) consider a linear

factor model with p latent factors:

rt = α+ βγ + βvt + ut, E[vt] = E[ut] = E[vtu′t] = 0 (1)

where rt are returns on N assets in excess of the risk-free rate, β are the factor loadings, vt are

the innovations of the p latent factors, ut are idiosyncratic errors, α are deviations from the model,

and γ is the vector of risk premia. If the model is correct, then α = 0 and any unit-beta portfolio
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with respect to factor vp delivers a risk premium of γp.
1

E[rt] = α+ βγ (2)

= 0 + βγ (3)

The set of d observable factors gt, whose risk premia are the object of interest, are assumed to be

proxies for the latent unobservable factors. Observable and latent factors are related as follows:

gt = δ + ηvt + wt, E[wt] = E[wtv
′
t] = E[wtu

′
t] = 0, (4)

where η characterizes the relation between the latent and observable factors, and wt is the mea-

surement error in gt.
2

Equation 4 represents the projection of observable factors onto the span of latent factors, aug-

mented with a constant and resembles the usual factor mimicking projection that is used to build

mimicking portfolios of nontraded factors (see Huberman et al. (1987)). The risk premium on the

observable factors gt implied by Eqs. (1)-(4) corresponds to γg = ηγ.

The main challenge posed by this framework is the identification of the unobservable factors

in Eq.(1). These latent factors need to (i) have sufficient time variation to correlate with the test

assets (so that β′β is not rank deficient); (ii) adequately explain the cross-section of the underlying

test assets; and (iii) be distinguishable from the error terms ut. While the first two features are

standard in the asset pricing literature, the last one is inherited from the PCA literature.

GX propose to estimate the latent factor space via PCA. In this regard, the latent factors vt are

the estimated principal components extracted from the T × T covariance matrix of asset returns

(alternatively, one can estimate principal components from the cross-section covariance matrix.

The two approaches take different normalizations but yield the same risk premia). Once the latent

factors are estimated, a two-step Fama-Macbeth regression is used to estimate the factor loadings

β and the risk premia of the unobservable factors γ (see Appendix A.1 for a detailed description

of GX three-step procedure).

Under fairly common assumptions (see Bai (2003)), the estimated latent factors are consistent

estimates (up to a rotation) for their population counterparts as long as N,T → ∞. Such latent

1GX provide an alternative set of results in the Online Appendix when the cross-sectional pricing errors α are
i.i.d., independent of β, u, and v, with a standard deviation σα > 0 and a finite fourth moment. In Section 3.3, we
briefly discuss the case of mispricing.

2In fact, ĝt = δ̂ + η̂v̂t, is defined as the denoised factor in GX.
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factors or PCs are the unique factors in population that price the test assets rt. In other words, if

all the relevant factors can be uncovered by PCA, then the methodology can successfully eliminate

strong missing factors ( Anatolyev and Mikusheva (2021)). Although their results are derived under

similar if not weaker assumptions than those in Bai (2003), they crucially depend on the pervasive

condition for a factor model. In that sense, the identification assumption that weaker and less

pervasive factors should not be priced is in clear contrast with the empirical findings of Lettau and

Pelger (2020).

In light of these considerations, we can think of the GX’s strategy as an identification strategy of

the latent factor model defined from the restrictions on the error terms’ moments. These restrictions

allow us to separate factors from idiosyncratic noise and guarantee a consistent estimator for a

candidate latent factor model which might not be the true one, as the distinction between signal

and noise is between unobserved quantities.

The crucial assumption posed on the strength of the latent factors is discussed in Giglio et al.

(2022), wherein an alternative approach is proposed to accommodate for a weak (asymptotically

sparse) factor structure to characterize the latent asset pricing formulation in Eq. (1). They show

that if N/λmin(β
′β)T ̸→ 0, the majority of the estimators proposed in the existing literature may

fail to produce a consistent estimation of the risk premium, as they do not potentially recover the

latent factor structure under such circumstances.

To address this issue, Giglio et al. (2022) propose to estimate the risk premium through su-

pervised PCA (SPCA). Before extracting the latent factors, a test asset selection procedure is

performed. The first step of the proposed methodology is about selecting an appropriate subset

of assets according to a specific metric, which, in this case, is presumed to be the maximal cor-

relation/covariance with the considered set of observed factors gt. After this screening procedure,

Giglio and Xiu (2021)’s three-pass method is applied with a single principal component. Before

iterating again on the first step, the test assets and the observable factors are residualized with

respect to the explained part of the principal component. Finally, when at the kth iteration of the

procedure a stopping rule is met, the risk premium of the observed factor is estimated as the sum of

the resulting k risk premia from the various iterations.3 In practice, the implementation proposed

by Giglio et al. (2022) is based on a grid search of the optimal tuning parameters through cross-

3See Appendix A.2 for a thorough description of the SPCA method.
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validation by considering the out-of-sample R2 of the mimicking portfolio Eq. (4): “[We] compute

the weights of the hedging portfolio built by SPCA using the training data only, and calculate the

mean-squared-error of hedging gt over the validation period using that portfolio [...] We apply this

criterion to pick q using cross-validation (CV) within the training sample”. Note that the estima-

tion of a parameter based on a hedging strategy might not be the optimal value one would estimate

for pricing. In fact, Antoine et al. (2020) argue that “since all models are misspecified [...] one can

only elicit a pseudo-true SDF. Its definition can only be objective-driven; the elicited pseudo-true

value [...] is the one that does the best job in respect to a specific application like pricing, hedging,

forecasting, explaining, etc. ”.

Furthermore, while in Giglio and Xiu (2021) the estimation of the parameters of the latent

model does not hinge on the observable factors, in Giglio et al. (2022) the estimation of the latent

factor model crucially depends on gt. The parameters of the latent factor model are functions of

the PCs, and their extraction depends on the considered test assets, which in turn are selected

based on the sample correlation/covariance between rt and gt. It is then clear that if we were to

consider two observable factors, say g1,t and g2,t, that are not identical and correlate differently

with the test assets, we would generally have different estimates of the risk premium on g1,t when

the set of observable factors consists either of g1,t alone or of {g1,t, g2,t}. In the first case, the

shrinkage is uniquely determined by the correlation between g1,t and rt, while in the second case,

it is based on the maximum between the two correlations - i.e., the test asset i is retained if

max{corr[g1,t, ri,t], corr[g2,t, ri,t]} ≥ threshold.

Thus, differently from Giglio and Xiu (2021), SPCA may suffer from the omitted factor problem

in the risk premium analysis. Moreover, for the asymptotically normal behavior of the estimator,

Giglio et al. (2022) need to assume that the number of variables in the set of observable factors gt

must be at least equal to the (unknown) number of true factors. For the identification of the latent

factor model, it is then of the utmost importance to determine which and how many observable

factors should be included in the analysis. Potentially, we deal with a plethora of asset pricing

models, with corresponding risk premia that are sensitive to the chosen specification of the model.

Since Giglio et al. (2022) assume the existence of a subset of assets where the factors are strong,

the possibility of weak factors with varying rates of strength affecting the factor structure of returns,

as discussed for instance in Freyaldenhoven (2021) is ruled out.
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From a more technical standpoint, it is important to note that the assumptions made to ensure

the favourable asymptotic behavior of the proposed estimator may not be considered mild. Firstly,

in order to incorporate the three-step methodology of Giglio and Xiu (2021) in their strategy, they

assume that the subset of test assets for which the latent factor is strong is non-random.

Secondly, to ensure consistency in the asset selection procedure, they assume that the proposed

selection algorithm consistently recovers, at each step, the uniquely identified subset of assets (and

thus the factors).

Lastly, the assumptions in place bound the trade-off in the asymptotic rate between the total

number of assets N and the selected number of assets N0: N0 needs to explode fast enough to

guarantee consistency of the estimated principal components but slow enough to guarantee the

correct subset of assets is selected.

2.1.2 Three-pass methods: Lettau and Pelger (2020)

Lettau and Pelger (2020) argue that factors with large Sharpe-ratios but with a relatively small

variance-covariance structure are potentially not recovered by conventional PCA. In fact, principal

components are usually extracted from the covariance (or alternatively, from the correlation ) matrix

of returns, therefore information contained in the mean is ignored. Given that conventional PCA

often performs poorly and in some cases structure in the first moments of the data is motivated

by economic theory, they propose to combine the first and second moments in a unique objective

function to estimate unobservable factors and show that including this information improves the

estimation of such latent factors. The intuition stems from asset pricing theory, which suggests

that priced risk factors should simultaneously show explanatory power in both the time-series and

the cross section (Pukthuanthong et al. (2019)).

Denote by R the T × N matrix of excess returns and R̄ the N × 1 vector of average excess

returns. The estimation strategy consists in recovering the latent factors, {ft}, by applying PCA

to the covariance matrix of the returns with overweighted mean:

1

T
R⊤R+ µR̄R̄⊤, (5)

where µ ∈ [−1,∞) is a tuning parameter. Lettau and Pelger (2020) show that this is equivalent to
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minimizing the following objective function:

min
{βi},ft

1

NT

N∑
i=1

T∑
t=1

(r̃i,t − βivt)
2 + (1 + µ)

1

N

N∑
i=1

(
r̄i − βif̄

)2
, (6)

where the first term is related to the unexplained time variation whilst the second one to the

(average) cross-sectional pricing errors, {N−1
∑N

i=1 αi}, with r̃t = rt − r̄ and vt = ft − f̄ being the

demeaned returns and factors, respectively. When µ = −1, the recovered latent factors coincide

with the ones of Giglio and Xiu (2021)’s three-pass methodology.

The generalized objective function is as follows:

Q̃⊤R⊤(I +
µ

T
11⊤)RQ̃,

where the case in Eq. (5) occurs when Q̃ = IT .

In our simulations, we set Q̃ = IN as the asymptotic results in Lettau and Pelger (2020) rely

on this particular choice of the weighting matrix Q̃. Additionally, we also consider the case where

Q̃ is the inverse of the diagonal matrix of standard deviations of the test asset returns.

In fact, as argued in Lettau and Pelger (2020) and Choi and Yang (2022), factors estimated

from the correlation matrix are more robust, as they are not influenced by few outliers that display

large variances.

Following Anatolyev and Mikusheva (2021) and Giglio et al. (2022), we incorporate the intuition

of Lettau and Pelger (2020) in the first step of the procedure of Giglio and Xiu (2021), with the

second and third step being unchanged. We denote this strategy as GXLP.

Given the similarity of this estimation procedure (and the asymptotic theory)with the one pro-

posed by Giglio and Xiu (2021), the previous comments on Giglio and Xiu (2021) apply. Moreover,

we wish to discuss the following points.

Firstly, the authors do not propose any estimator for the tuning parameter, γ, which is pivotal

for the trade-off between making all weak factors detectable or attaining the highest correlation for a

particular factor. In particular, the authors emphasize that, on one side, “if too much weight is given

to an uninformative mean, the estimator will pick up some of the non-zero residuals.”On the other

side, “increasing the signal strength for detecting weak factors becomes more relevant for correlated

residuals,”which are unobservable quantities. This amounts to having a potential candidate model
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for the latent space for each µ ∈ [−1,∞). Interestingly, when µ → ∞, the estimator can perform

well for weak factors if the information from return covariances is dominated by the information

about β derived from the expected return βγ. (Giglio et al. (2022) Proposition 4)

Secondly, the authors derive the statistical theory separately for the strong factor and the weak

factor scenarios, since in the mixed case, once the strong factors are estimated, “the residuals from

the strong factor model can then be described by a weak factor model. ”(Lettau and Pelger (2020))

Hence, despite the clear implementation, consistent estimation of the latent weak factors heavily

relies on the consistent estimation of the number of strong factors, which in general is hard to pin

down. (See, e.g., figure 8 in Lettau and Pelger (2020) and figures 1-2 in Anatolyev and Mikusheva

(2021))

Lastly, the (high-level) assumptions on the risk exposures β and on the time dependence of the

residuals set in place for achieving desirable asymptotic properties are stronger than the common

assumptions usually found in the literature.

2.2 Methods with observable factors

2.2.1 Four-split method: Anatolyev and Mikusheva (2021)

Similar to Eq. (1), Anatolyev and Mikusheva (2021) (henceforth AM) consider the linear beta-

pricing model

rt = βλ+ β(Ft − E[Ft]) + ut, (7)

where the p× 1 vector of factors, Ft, is observable. The model is assumed to be correctly specified,

thus the asset pricing restriction of Eq.2) holds.

To estimate risk premia associated to the observable factors when the number of assets N is

large, they provide a methodology that is robust to two scenarios: (i) the observable factors are

weak; (ii) there is (sufficiently) strong cross-sectional dependence among the error terms, ut.

Specifically, they posit that some of the factors may enter the model with a local-to-zero (i.e.,

of order O(T−1/2)) risk exposure. Additionally, they impose a latent factor structure on the (un-

observed) error terms:

ui,t = v′tκi + ei,t, ∀i, t (8)
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for some unobserved factors vt with loadings κi, and where the ei,t’s are the “clean errors”whose

dependence is nearly negligible. The reason behind this assumption is that numerous studies show

that the post-estimation residuals usually have a non-trivial factor structure which, however, is

thought to carry no compensation for systematic risk.4

To estimate the parameters of interest, the authors propose a sample-splitting IV methodology.

They argue that if the sources of potential bias coming from the risk exposures (i.e., the betas esti-

mated in the first step of the Fama and MacBeth (1973) procedure) are conditionally independent,

then a sub-sample estimate of the exposures can be potentially a valid instrument when estimating

risk premia in the cross-sectional regression. In other words, they propose to first split the sample

into four distinct, non-overlapping subsets, and then, for each of the four subsamples, estimate the

risk exposures using a time-series regression. Once the risk exposures are estimated, they suggest

running an IV cross-sectional regression, using the estimated betas as instrument. This procedure

is repeated for each subsample in a circular fashion, to get four estimates of the risk premia. Lastly,

the average of these four risk premia estimates represents the overall risk premia obtained with this

estimation strategy (We provide a detailed description of the algorithm in Appendix A.4).

Anatolyev and Mikusheva (2021) assume the missing factor structure to be strong (and therefore

stronger than the potential weak factors) and not to carry any mispricing. Under these assumptions,

the observable factors are the unique drivers of the risk premia. The procedure, therefore, is affected

by the usual omitted variable problem encountered in standard asset pricing models. Moreover,

the validity of the four-split estimation method is jeopardized when the observable factors are

completely spurious, as they assume that the observable factors are drifting to, but not zero in

population. Lastly, the asymptotic behavior of the estimator relies on two additional parameters:

the number of unobserved strong factors in the error factor structure, and the weighting matrix

used in the IV regression.

4“One may wonder whether [...] the pricing model is misspecified. The answer is “no”; the linear factor pricing
model describes the expectations of excess returns, while the factor structure in the error is related to their covariances
or co-movements [...] Not all co-movements of returns must carry non-zero risk premia; those co-movements can be
placed in the error term without causing misspecification of the pricing model”(Anatolyev and Mikusheva (2021))
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2.2.2 Two-pass method of Gagliardini et al. (2016)

Different from the previous models, Gagliardini et al. (2016) (GOS) consider the following

conditional factor model for the excess return, rt(γ), of asset γ ∈ [0, 1]:

rt(γ) = βt(γ)
′λt + βt(γ)

′(Ft − E[Ft|Ft−1]) + εt(γ), ∀t ∈ Z, (9)

where the filtration Ft entails the flow of information available to investors up to date t, Ft is the

K× 1 vector of observable factors, βt(γ) are the factor sensitivities (or time-varying loadings), and

εt(γ) are the error terms. The random variable [λt(γ)]γ∈[0,1] is the K × 1 vector of the conditional

risk premia.5

To estimate the parameters of interest, they further characterize the functional specification of

the model coefficients, which amounts to expressing the conditioning information with respect to

a set of instruments (see their Assumptions FS. 1-2). Since our analysis focuses on unconditional

risk premia,

E[rt(γ)] = β(γ)′λ,

the estimation procedure reduces to two steps that are similar to the ones in Fama and MacBeth

(1973). The first stage consists of an OLS time series regression of excess returns on the factors. The

second stage consists of a cross-sectional weighted least squares (WLS) regression (augmented with

the factor mean) with respect to a trimming device, that is, an indicator function that guarantees

the avoidance of ill-conditioning. The trimming device depends on a function of the eigenvalues

corresponding to the covariance matrix of the first-pass estimates.

Note that the focus of Gagliardini et al. (2016) is on time-varying risk premia with respect to

a filtration generated by a set of instruments. It is clear that the performance of the procedure

in finite sample, depending on the identification strength, relies on the choice of such instruments.

Nonetheless, when the instrument set is empty, this risk premium estimator could be used in a large-

N environment as a potential benchmark against which the performance of the various methods

described in previous sections could be compared. In fact, under this setting, the methodology of

Gagliardini et al. (2016) can be seen as a large-N generalization of the standard Fama-Macbeth

regression. Second, the properties of this estimation strategy when spurious factors are present in

the analysis have not been investigated, which calls for a careful examination.

5For further details, please refer to Section 2.1 of Gagliardini et al. (2016).
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3 Data Generating Processes

This section presents the Data Generating Processes (DGPs) we use to characterize the sta-

tistical properties of the t-tests of parameter restrictions associated with the estimation strategies

discussed in Section 2.

In Section 3.1, we begin with a scenario that follows closely the simulations in Giglio and Xiu

(2021), where we have a relatively large number of assets and the factor structure is strong. In

Section 3.2, we consider scenarios in which the factor structure might not be strong. The analysis

is then carried out for the weak, spurious, and semi-strong factor cases. Notably, throughout these

two sections, we assume that the underlying model is correctly specified. Finally, in Section 3.3,

we briefly discuss a more general framework in which mispricing is allowed for in the model.

Additionally, in Appendix C, we study all the aforementioned scenarios calibrating the DGPs

to align with the methodology of Anatolyev and Mikusheva (2021).

3.1 Strong and pervasive factors in a large-N setting

We start our analysis with the benchmark case in which the factor structure of our simulated

returns is strong and pervasive. In this setting, all estimators should perform relatively well, in

particular when the sample size is sufficiently large.

We simulate a five-factor DGP based on the five-factor model of Fama and French (2015). We

calibrate population parameters following two different approaches. The first approach mirrors the

methodology outlined in Giglio and Xiu (2021), whereas the second one follows Anatolyev and

Mikusheva (2021) and is described in Appendix C.

In the first calibration strategy, the returns are generated according to Eq. (1) where the latent

factors are calibrated to match the denoised6 version of the five Fama and French (2015) factors.

The factors (vFF5
t ) are latent and we observe a noisy version of them (as specified in Eq. (4)). We

calibrate the η and the measurement error wt as in Giglio and Xiu (2021).

Given a number N̆ of test assets returns r
(N̆)
t , the realizations of the N̆ × 1 simulated returns

6See Giglio and Xiu (2021) for details about the denoising procedure. In our simulation setting, we generate
artificial returns with different degrees of denoising, i.e., p = {5, 7, 9}. However, we report the results only for the
case when the number of principal components used to denoise factors is five. The complete set of simulation results
is available upon request.

12



r⋄t , together with the 5 × 1 simulated factors v⋄t , and the 5 × 1 simulated measurement errors w⋄
t ,

are generated from a multivariate normal as follows:r⋄t
v⋄t
w⋄
t

 ∼ N

( r̄
0(2×5)×1

)
,

 Σ̂r Σ̂r,v 0

Σ̂v,r Σ̂v 0

0 0 Σ̂w


 , (10)

where r̄ is the N̆ × 1 vector of sample average returns, Σ̂r is the N̆ × N̆ sample covariance matrix

of returns, and Σ̂v and Σ̂w are the 5 × 5 sample covariance matrices of the empirically calibrated

denoised factors vFF5
t and measurement errors. Σ̂r,v is the N̆ × 5 matrix of sample covariances

between the returns and vFF5
t . The simulated observable factors (i.e., noisy proxies of the true

priced factors) are g⋄t = v⋄t + w⋄
t . The other relevant quantities for the model in Eqs. (1)-(4), i.e.,

{β̆, γ̆, û(N̆)
t }, are then obtained as

β̆ = (Σ̂v)−1(Σ̂r,v)′, γ̆ = (β̆
′
β̆)−1β̆

′
r̄

û
(N̆)
t = rt − β̆γ̆ − β̆vFF5

t .

These quantities are taken as the population ones in the various simulation designs. In the

experiments, we consider T̆ = {100, 200, 400, 600, 1200} and N̆ = {50, 100, 200, 400, 600}.

This design allows us to differentiate our analysis from the simulation studies that were proposed

in the papers mentioned in Section 3. We are not imposing particular restrictions on the second

moments, such as zero non-diagonal entries or artificial factor structures (e.g., Giglio and Xiu

(2021) and Lettau and Pelger (2020)). Instead, we aim at maintaining the cross-sectional covariance

structure of the error terms as close as possible to the empirical one. This is an important feature

to account for while simulating returns for two main reasons. First, there is strong evidence of high

cross-sectional dependence, or strong factor structure, in the residuals (See Kleibergen and Zhan

(2015) and Anatolyev and Mikusheva (2021)). Second, standard PCA might not properly take into

account the heteroskedastic feature of the data. (See, for comparison, the heteroPCA method of

Zhang et al. (2022)).

To preserve the heterogeneous factor structure of the original dataset, we always include bonds

and currencies portfolios in the selected asset returns when calibrating the parameters.

Finally, in our simulations, we maintain the condition N̆ ≤ T̆ when generating our artifi-

cial returns. For instance, when N̆ = 400, we then generate samples corresponding to T̆ =
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{400, 600, 1200}.7 In the interest of space, the simulation results for the small-N cases are rel-

egated to the Online Appendix.

3.2 Spurious, weak, and semi-strong factors

Most of the large-N methods described above should be robust to a weak factor structure. To

study their performance in terms of size and power, we need to first define the various DGPs.

Factors’ weakness arises when the betas are small (or zero). In this case, time variation is

not sufficient to ensure the identification of the factor risk premium. Nonetheless, on one hand,

Anatolyev and Mikusheva (2021) suggest to use the betas as instruments, and on the other hand,

the methodology of Giglio and Xiu (2021) hinges upon a Fama-Macbeth procedure applied to the

latent factor model. An exhaustive theoretical discussion can be found in Giglio et al. (2022),

in which it is formally shown that some of the estimators presented in the previous section are

inconsistent in a sparse-beta scenario.

Following Gospodinov et al. (2019), we define the observed factor gk,t to be spurious if the

population betas associated with gk,t are zero, i.e., βk = cov(gk,t, rt)/var(gk,t) = 0n×1. As for weak

factors, we need to consider a variety of cases, all related to different specifications of a convergence

rate. (Freyaldenhoven (2021)):

• Pervasive/global weak or semi-strong loadings (Onatski (2012)), β = Op(N
−1/2). While

Onatski (2012) discusses explicitly a single rate of convergence, Freyaldenhoven (2021) gen-

eralizes the argument to various rates of convergence. In particular, if β = Op(N
−α), with

α < 1/2, then we are in the case of semi-strong factors (or loadings).8

• Locally strong loadings (Freyaldenhoven (2021) and Giglio et al. (2022)): βi = {βi,0, βi, ̸0},
with [βi,0]i = 0 and [βi, ̸0]i = Op(1). The betas are sparse, since [βi,0]i = 0, but, if the model

is restricted to the assets corresponding to the exposure β ̸0, such factors are strong. In other

words, among all the assets, there exists a subset of test assets whose factor structure is

strong.

7In untabulated work, we also run simulations when T̆ < N̆ . The results are very similar except for extreme cases
such as T̆ = 100, N̆ = 600. The results are available from the authors upon request.

8See Connor and Korajczyk (2022) and Antoine et al. (2020).
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In summary, the problem of identifying risk premia could be traced back to four scenarios:

spurious factors, weak factors (or loadings), sparse loadings, and semi-strong factors (or loadings).

In our simulations, we consider the following scenarios where returns are generated under a

weak factor structure.

1. Spurious factors

We consider the same scenario of Section 3.1, except that we now augment the set of observable

factors ğt with a factor that is uncorrelated with the test asset returns. In practice, we consider

g⋄6,t such that

E[g⋄6,tr
(N̆)
t ] = 0N̆ , g⋄6,t ∼ N (0, σ̆2), σ̆ = σ̂MKT × {1/15, 1/3, 4/3, 8/3},

where σ̂MKT is the sample variance of the MKT factor estimated from the data. In other

words, we generate an independent factor, with variance that is a multiple of the market

variance. The rest remains unchanged with respect to Section 3.1, as the spurious factor does

not enter the DGP.

2. Weak/Semi-strong loadings

Our starting point for this scenario is the one discussed in Section 3.1. However, we include an

additional factor in the DGP. This additional factor is the sixth principal component extracted

when calibrating the parameters, so that the denoised factors are six in total: the five Fama

and French (2015) and the sixth PC.9 This weaker factor is observed with precision (i.e., the

measurement error wt is set equal to zero to avoid additional distortions) and is orthogonal to

the other observable factors. This setup is similar to the setting in Anatolyev and Mikusheva

(2021). Nonetheless, in our simulations, we impose the Sharpe ratio (SR) of this factor to be

relatively high. We impose the Sharpe Ratio of such factor to be a multiple of the market’s

Sharpe (SR ∈ SRMKT×{1, 2, 8}). In other words, by design, the factor is weak but important

to price the cross-section of asset returns. Since we want to impose weaker loadings, we scale

down the betas by the (inverse) rate of convergence.10 Since β̆β̆
′
/N̆1−2θ1 = IN̆ , we have the

9We emphasize that Giglio and Xiu (2021) set p̂ = 7 in their empirical application, therefore assuming that the
factor structure is strong and pervasive up to the seventh PC.

10If one considers θ = 0, then it is the case of the pervasive strong factors, meaning the rate of convergence is fast

enough. Vice versa, when θ = 1/2, then we have the case envisaged by Onatski (2012), β̆β̆
′
→ IN̆ , i.e., β̆ = Op(N̆

−θ).
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following relationship between the rate and the signal-to-noise ratio:

tr(Σr − Σû)/tr(Σû) = tr(β̆Σv̂β̆
′
)/tr(Σû) = N̆1−2θ × signal-to-noise,

where the signal-to-noise = tr(Σv̂)/tr(Σû). Thus, changing the different rates of convergence

boils down to different specifications of the signal-to-noise ratio. In particular, the relationship

between rates of convergence and the signal-to-noise ratio is as follows:

θ = 1/2

(
1− ln[tr(Σr − Σû)]− ln(tr(Σû))− ln(signal-to-noise)

ln(N̆)

)

We consider θ ∈ 0.05 × {1 : 10}, i.e., from moderately weak to extremely weak loadings.

Given the calibrations we discussed in the previous section, we compute the N̆ × T matrix

of residuals û
(N̆)
t (and its (N̆ × N̆) variance-covariance matrix). Then, factor loadings β̆ and

residuals û
(N̆)
t are scaled as follows:

β̆
⋆
= β̆ × N̆−θ

û⋆t = û
(N̆)
t × N̆−θut .

where β̆
⋆
(and û⋆t ) are the rescaled exposures (and error terms), and θut ∈ 0.05×{1 : 10}. This

creates a 10 × 10 grid of possible combinations of rates of convergence, giving a clearer and

more comprehensive picture of the behaviour of estimators under the weak loading scenarios.

Note that we are implicitly assuming that the initial betas are strong loadings, which, given

that the factors to generate returns are calibrated to match the (denoised) Fama and French

(2015) factors, is a plausible assumption.

Subsequently, we generate the simulated returns, r̆⋆t , according to the asset pricing model in

Eq. (1) with the rescaled exposures, denoised six factors, and rescaled error terms, while

maintaining the (unscaled) risk premia γ̆:

r̆⋆t = β̆
⋆
γ̆ + β̆

⋆
v̂t + û⋆t . (11)

The simulations are then based on Eq. (12) and {r̆⋆t }.

3. Sparse Loadings

We follow a similar procedure as before, as we include in the DGP for returns the same
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six factors. However, for this particular case, we impose a level of sparsity on the betas

by randomly setting to zero the loadings of a number of assets with respect to some group

of factors. We consider the exposures associated with the market factor.11 In practice, we

multiply entry-wise the N̆ ×1 loading β̆Mkt by a random indicator function vector, ι(θsparse),

whose entries are generated according to a Bernoulli distribution with the probability of

success being 1 − θsparse, with θsparse ∈ 0.05 × {1 : 6}. In the worst case (θsparse = 0.3),

therefore, up to 30% of the simulated assets have a risk exposure with respect to the market

factor that is equal to zero. Then, we have

β̆
⋆

i = β̆i,MKT × ι(θsparse)i i = 1, .., N̆

û⋆t = û
(N̆)
t × N̆−θut ,

with θut ranging as before. We generate the new returns, r̆⋆t , accordingly to Eq. (11). The

simulations are then based on Eq. (12) with respect to {r̆⋆t }.

4. Local and Strong/Semi-strong Loadings

Similar to the spurious factor case, we do not include the sixth factor in the DGP. This last

case relaxes the pervasiveness and the strength of the factors by considering a heterogeneous

environment. In Section 4.5 we motivate why this scenario is, in our opinion, relevant. After

ranking the returns with respect to their volatilities, we impose a strong factor structure for

the lowest-volatility asset returns and a semi-strong factor structure for the remaining ones.

Considering the exposures associated with the SMB factor, we multiply entry-wise the N̆×1

loadings β̆SMB by the vector ζ(q, θ), whose entries are either 1 for the corresponding bottom

q% of the volatility-ranked returns (i.e., SMB is a strong factor for such assets) or N̆−θ (i.e.,

SMB is a semi-strong factor for such assets). We consider θ ∈ 0.05 × {1 : 10}.12 We then

have

β̆
⋆

i =

{
β̆i,SMB × N̆−θ i ̸∈ bottom-50% volatile

β̆i,SMB i ∈ bottom-50% volatile

û⋆t = û
(N̆)
t × N̆−θut ,

11We have results that extend the analysis to other groups of factors. The results are in line with those presented
in the paper and are available upon request.

12The results with different percentiles are in line with those presented in the paper and thus omitted and available
upon request.

17



with θut ranging as before. We then generate the new returns, r̆⋆t , according to Eq. (11). The

simulations are then performed as before, via Eq. (12), with respect to {r̆⋆t }.

3.3 Mispricing

Up to this point, our analysis has been carried out under the scenario in which the asset pricing

restriction (Eq. (2)) holds, or in other words, by imposing α = 0 in the linear factor asset pricing

model in Eq. (1).

It is well-known in the asset pricing literature that models are very likely to be misspecified,

which in turn translates into non-trivial mispricing (see, for instance, the influential work of Hansen

and Jagannathan (1997)).

We then consider the case of non-zero mispricing in three scenarios: Strong and pervasive

(Section 3.1), Weak/Semi-strong Loadings, and Sparse Loadings (Section 3.2). The simu-

lation setting is the same as before, except that the mean of the multivariate normal for generating

the sample (Eq. (12)) is translated by a (N̆ + 2 × K) × 1 vector ᾰ = (α̂′, 02×K ′)′ with variance

σ2
ᾰ = N̆−1ᾰ′ᾰ, with respect to K = {5, 6}, the number of factors (depending on the scenario), and

α̂ is the estimated pricing errors, i.e., α̂ = µ̂− β̆γ̆. As these results are similar to, and often worse

than, those of the benchmark scenarios, we relegate these simulation results to Appendix B.

3.4 DGP calibration (Giglio and Xiu (2021))

We use the same set of portfolios employed by Giglio and Xiu (2021). Our calibrations for

the simulations are based on a monthly dataset of 647 portfolio returns that span a period of

35 years, from 1976 to 2010. This data set includes portfolios sorted by a different number of

characteristics commonly linked to variation in expected equity returns, US Treasury and corporate

bonds portfolios, as well as currencies portfolios.

We refer the readers to the supplemental material provided by Giglio and Xiu (2021) for a

detailed description of the data sources, test asset portfolios, and factors.
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Data: {r(N̆)
t , gt}Tt=1

GX calibration

{r̄, Σ̂r}
{Σ̂v, Σ̂r,v, Σ̂w}

DGP: N (µ̂, Σ̂)

(ith Simulation out of 100)

Output: {r⋄t , g⋄t }T̆t=1

RP estimates: λ̂

Estimators

Hsize
0 : λ̂ = λ0 Hpower

A : λ̂ ̸= 0

Figure 1: A visual representation of the Monte Carlo simulations for size and power.

4 Results

In this section, we discuss the main findings of our Monte Carlo simulations, while providing an

extensive version of our simulation work in the Online Appendix. For ensuring good Monte Carlo

properties, all the results are based on 1000 Monte Carlo replications.In our simulations, once

we draw a sample of asset returns and observable factors (i.e., noisy proxies of the true factors),

{r⋄t , g⋄t }T̆t=1, we can employ one of the estimation strategy presented in Section 2 to get an estimate

of the risk premia. Having such estimate, say λ̂, when studying size and power, we are testing two

different hypotheses:

Hsize
0 :λ̂ = λ̆

Hpower
A :λ̂ ̸= 0

which are, for size, testing whether the risk premia estimates are statistically close to their true

values (that is known in our simulation to be λ̆), and for power, testing whether the risk premia

estimates are statistically different with respect to zero.

In practice, when the sample is sufficiently large, this translates into comparing the t-statistics to

the critical values of a standard normal distribution with respect to a 5% significance level. Drawing

and repeating the simulation experiments will give us an empirical distribution of rejection rates: if

the asymptotic normality of the estimators holds correctly, we expect the empirical rejection rates

under the null to be around 5%, while having power as large as possible.
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In the next subsection, we report the results for different simulation scenarios presented in

Section 3. As already mentioned in Section 3.1, the focus of our results is to the case of large-N

(and large-T ), as the estimators assessed are specifically designed to estimate the risk premium on

factors with a large panel of returns. We relegate the remaining results to Online Appendix.13

Three remarks are in order. First, if the test is not reliable in terms of size, then its power

becomes an immaterial feature to assess. Thus, when the test is severely oversized, we do not

comment on results related to power.

Second, if it is not explicitly clear when discussing the PCA-based estimators, we implicitly

estimate the risk premia when the number14 of latent factors is set equal to 7 (i.e., p̂ = 7), aligning

our estimation strategies to the one reported in the work of Giglio and Xiu (2021).

Third, since Anatolyev and Mikusheva (2021)’s estimator requires to split the sample into four

non-overlapping subsets, we consider two possible choices: sequential or nonrandom splitting (e.g.,

the first subsample corresponds to the one where t = (1 : T̆ /4)), and random splitting (e.g., the

first subsample is extracted via random draws without replacement).

4.1 Strong and pervasive factors

Table 1 to Table 4 report the rejection rates of the asymptotic t-statistics for the various

estimators described in Section 2, when the factor structure of the simulated returns is strong and

pervasive.

We start by considering returns generated from the Fama and French (2015)’s 5-factor model.

As discussed in Section 3, our set of observable factors includes a noisy version of these five factors.

Empirical results for the estimation methodologies of Giglio and Xiu (2021) and Lettau and Pelger

(2020) include different specifications of the number of latent factors included in the estimation of

the risk premium (p̂ = {1 : 12}).

The first five columns of each table present the results of the test on the estimated risk premium

being equal to the true value, thus displaying the empirical size of the test. Columns 6 to 10 report

the results when testing the estimated risk premium being equal to 0 (which in population is not).

13All other simulations are available upon request.
14We have a comprehensive study of the number of latent factors in our DGPs, with respect to different Information

Criteria estimators. For the sake of exposition, we do not report this here, and it is available upon request.
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We refer to these latter as displaying the empirical power of the test.

Table 1 and Table 2 about here

Clearly, the empirical size for the t-tests of the PCA-based methodologies is in line with the

5% nominal level of the test, especially when N̆ and T̆ increase. We find little to no difference

between the GX and GXLP in terms of size and power, even when the GXLP’s tuning parameter

µ increases. This finding is consistent across different specifications of the number of assets and

time series observations. When the risk premia on factors are estimated using supervised PCA

(SPCA), again the size of the t-statistics is in line with the one of the other two PCA-based

estimators. However, this methodology exhibits larger power for the SMB, HML, and CMA

factors, especially in finite samples (showing an overperformance of around 5 to 10 percentage

points).

When the risk premia are estimated using the sample splitting IV methodology proposed by

Anatolyev and Mikusheva (2021), our simulation results suggest that only the size of the t statistic

associated with the market factor is in line with the nominal level of the test, with power increasing

as the time series sample size increases. The t-test for the SMB factor is slightly oversized (ranging

from 8% to 13% for different sample sizes), while the power, although lower, exhibits similar

behaviour as in the case of the market factor (increasing with T̆ ).

Table 3 about here

For the remaining factors that are assessed, we find that the test performs poorly under the

null, with rejection rates above 35% for the statistics related to HML and RMW , and well above

10% for CMA. The results are qualitatively the same for different specifications of the number

of potentially missing factors and the tuning parameter A. Overall, we can conclude that the

asymptotic properties associated with this estimator tend to be not ideal, leading to misleading

inference on priced factors when used to price such factor structure.

Turning to the performance of the test built on Gagliardini et al. (2016), we note a similar

behaviour as for the case of AM. In fact, the test presents good properties in terms of size when

testing the risk premium of the market factor (although the test exhibits lower power), while it
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breaks down for the other factors, in which the test is clearly oversized with size close to the power

for CMA and RMW. As the asymptotics for this estimator are grounded on the assumption of the

factors being strong, our results might suggest that potentially the last two factors in the Fama

and French (2015) five-factor model might be considered as (relatively) weak.

Table 4 about here

4.2 Spurious factors

We also examine the statistical properties of the test when a spurious factor, that is, a factor

that is uncorrelated with test asset returns, is included in the set of observed factors. As the

distortions due to spuriousness when conducting inference might depend on the factor’s variance,

we evaluate the asymptotic behaviour of the t-statistic for different specifications of the spurious

factor’s standard deviation. (See Section 3.2) We report the tables in the Online Appendix.

Not surprisingly, when we assess the statistical properties of the PCA-based estimators, we

find that all tests (GX, GXLP, and SPCA) perform discretely well, with a rejection rate that, on

average, does not exceed 5%, if not undersized.

The three-step procedure of Giglio and Xiu (2021) allows us to estimate risk premium for any

observable factor separately, even when not all the true risk factors are included in the model.

Therefore, including the spurious factor in the analysis does not affect the test results, as for the

other five factors we see similar behaviour as in Section 4.1. This conclusion comes from realizing

that, if one of the elements in gt is uncorrelated with the asset returns rt, then it is necessarily

uncorrelated with the latent factors vt as well. This, in turn, means that in the second step of

GX (Eq. (4)), the projection of the spurious factor onto the space spanned by the vt (i.e., the

η’s), will be (extremely close to) zero, making the estimated risk premium on the observable factor

practically zero.

When we turn to the statistical properties of the test for the AM estimator, we provide evidence

that this estimator would suffer identification problems: one would tend to conclude more often

that a factor is priced when in fact is spurious. Rejection rates for the null of the risk premium being

zero for the spurious factor are above 15% in all the simulations we perform. The over-rejection of

the null (i.e., oversize) of a factor being spurious is more severe when N̆ increases (higher than 26%
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for N̆ = 600, while around 18% for N̆ = 400). Including additional factors in the factor structure

of the error terms can help a little in mitigating the problem: although still above the nominal level

of the test, when we include two potential missing factors in the error terms when we estimate risk

premia, the rejection rates of the test for the spurious factor reduce from 26% (and 18%) to around

22% (and 12%) for N̆ = 600 (and N̆ = 400).

Furthermore, we note that including a spurious factor in the estimation of the risk premia does

not affect the test size (and power) of the other priced factors, as the results of the simulations are

in line with those discussed previously.

This pattern is not found when we look at the results for the GOS estimator. In fact, in addition

to the extreme oversize of the test for the spurious factor(rejecting the null of the risk premium

being zero more than 90% of the times), the inclusion of such spurious factor badly affects the test

size for the priced factors, driving very large distortions in conducting overall inference. Thus, we

are prone to rank the GOS estimator last in terms of performance.

In general, for all the estimators covered in this work, we find that the standard deviation of

the spurious factor does not induce stronger distortions to the size and power of the t-tests, as the

test properties do not change relevantly when we increase the volatility of the spurious factor.

4.3 Weak/semi-strong loadings

Next, we examine the size and power of the t-tests for the case of weak factors. Recall that

our generated returns have a weak factor structure, i.e., the exposure of the assets to the factors

is scaled according to a rate θ. We consider the case in which the process that generates returns

consists of a 6-factor model, in which the Fama and French (2015) five-factor model is augmented

with the sixth principal component extracted from our test asset returns. Recall that the last factor

is already relatively weaker by construction since the denoising is done with respect to the first 5

PCs. In the different simulations, we impose different Sharpe ratios for our sixth factor, in a way to

accommodate the framework of Lettau and Pelger (2020), where one of the priced factors is weak

but has a relatively high Sharpe Ratio: the Sharpe ratio is set equal to 0.96 (8 times the one of the

market factor).15

15The results for different Sharpe ratio specifications are available upon request.
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We apply a convergence rate to the empirical error term to provide results in terms of a plethora

of signal-to-noise ratios. The top left corner of the (x, y)-grid of the figures depicts the case in which

the factors are extremely weak (θ → 0.5) and the error terms are not scaled (θut → 0). Vice versa,

towards the bottom centre of the (x, y)-grid, we have the opposite scenario (θ → 0, θut → 0.5),

meaning that we tend towards the previous scenario of a strong and pervasive factor structure.

Regarding the z-axis, warmer colours signal values that are closer to 1. Figure 2 below provides a

graphical example of how the charts are set up.

Table 2 about here

Figure 3 and Figure 4 plot respectively the size and power (the z-axis) of the t-statistics for the

various estimators as a function of θ on the y-axis and θut on the x-axis(see Section 3.2).

Figure 3 and Figure 4 about here

Clearly, in the extreme scenario of very low signal-to-noise ratio, the size properties of the test

for the GX estimator are far from being optimal. The rejection rates under the null of correct

risk premium are over 90% for all the 6 factors. Given a θ of 0.45 (i.e., a close-to-be weak factor

structure), the empirical rejection rates are close to the nominal level of the test for θut > 0.35 for

the FF3 factors, while we reach the same level of size for all factors only when θut > 0.45. As we

expected, in first approximation, we can conclude that, if the latent factor structure is not strong

enough, inference on the estimated risk premia can be severely misleading.

A similar conclusion is reached when we turn our analysis to the GXLP estimator. Despite the

size properties of t-statistic showing improvements for lower level of signal-to-noise, rejection rates

are still very far from the nominal level of the test (on average, around 70% with peaks of 95% and

100% when testing the market factor and the sixth principal component). Again, as we saw for

the GX estimator, when we move from the top left to the bottom right corner of the figure, hence

increasing the strength of the factor structure of our generated returns, the test becomes fairly

reliable. No sign of improvement is shown when test asset selection is performed and the SPCA

estimator is adopted. This comes with little to no surprise as the returns in this scenario share the

same factor structure. Hence, ideally, the subset of assets that is selected in the first step of the

procedure would have the same factor structure as the starting dataset.
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In general, when the factor structure is extremely weak (θ → 0.5), the tests for all the PCA-

based estimators considered in this work show poor asymptotic properties, with the size being fairly

close to the power of the test, a condition that suggests that none of these estimators can provide

reliable inference when the factors that drive the cross-section of returns are extremely weak.

When we look at the performance of AM, we do not see a common pattern across factors when

the signal-to-noise ratio is very low. In fact, when doing inference on the estimated risk premium

on the market factor, the size of the test is 5.3% while for the other Fama and French (2015)’s

factors the empirical sizes are 11.4%, 36.4%, 31.6%, and 17.3%, for SMB, HML, RMW and

CMA, respectively. When testing the last factor (the sixth principal component), the rejection

rates for the null of correct risk premium stand at 1.9%, clearly showing that the test is undersized

in this situation (in general, for this set of simulations, the size of the test on the sixth factor is

below 2% when a θ ≈ θut). As we move to the bottom right part of the graph, the results converge

to the ones discussed in the previous section.

The AM t-statistic seems to behave fairly well when compared to the others. In the extreme

case, the power when testing the estimated risk premium on market factor is around 60%, on

average, when the value of θut is larger than 0.05. The test on the market factor shows low power

(around 10%), when θut < 0.15 and θ = 0.5. When testing the other factors, the test does not

seem to perform well in terms of power. As an example, for the observed HML and CMA, the

rejection probabilities of the null of the risk premium being zero when the factor is priced do not

exceed 20%. In general, when we are in the top left corner of the charts, the test exhibits no power

across all the priced factors.

Lastly, regarding the t-statistic of GOS, its behaviour substantially deteriorates, and it is hard

to draw a conclusion that differs from the previous one. The test is strongly oversized for almost

all the signal-to-noise ratios. We remind the reader that GOS has been designed especially for the

estimation of conditional asset pricing models, and thus, in our context, represents a benchmark

regarding estimation strategy.

4.4 Sparse loadings

We now focus on a setting in which the exposures are sparse. In particular, we decide to set

to zero (some of) the assets’ exposure to the MKT factor so that, for those selected assets, their
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returns are not driven by changes in the MKT factor (see Section 3.2).

Since the true factor loadings of some assets are zero for one of the factors in the DGP, when

the model is estimated, the source of variation in the betas for such assets is driven by measure-

ment errors, thus making the estimated risk premium biased. Under this scenario, the proposed

methodology of Giglio et al. (2022) becomes appealing. In fact, among the assets, there exists

by construction a set of test asset returns in which the market factor is priced. Therefore, if the

screening procedure for the test assets of Giglio et al. (2022) can consistently screen out those assets

with zero exposure to the market, we should be able to estimate the risk premium of the factor

with higher precision than the one estimated with the other methodologies.

Fig. 5 shows the size of the t-test of the null of the estimated factor risk premium being equal to

the true value for the estimators that do not perform a selection on the test assets. The rejection

frequencies under the null are plotted for different specifications of the error rate and sparsity rate.

The sparsity rate ranges from 5% to 30%, indicating that the proportion of assets in our universe

with zero exposure to the market varies from 5% to 30% respectively.

Figure 5 and Figure 6 about here

First of all, regarding the MKT ’s t-statistic, the PCA-based methodologies of GX and GXLP

produce a t-test that is severely oversized, and the over-rejections do not depend neither on the

number of assets with zero exposure to the market factor (i.e., the θsparse), nor the error term

scale (i.e., θut), as illustrated by the flat surface. In terms of magnitude, for MKT , the simulated

rejection frequencies are around 60% when the number of latent factors included in the estimation

of the risk premium is 7. Moreover, there seems to be little to no difference when factors are

extracted by the weighted PCA methodology of Lettau and Pelger (2020).

Overall, the analysis regarding the MKT ’s t-stat does not change when we employ the AM

and GOS estimators. The rejection rates are still over 50% for the market factor even when this

factor is spurious for a small portion of the total assets. For the other factors, the over-rejection

under the null of correct risk premia is less severe, although still relevant for all four estimators,

with the GX and GXLP ones performing relatively better. For these two estimators, in fact, we see

that the rejection rates for the t-test on the SMB and HML factors are respectively around 20%

and 10%, while when the risk premia are estimated using the GOS and AM methodologies, the
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frequencies of the over-rejection are well above 50% for each of the two factors. The same pattern

is found when we look at the test results for the RMW and CMA factors. Under the null of the

risk premium being equal to the true value, the test is oversized by 15% and 2% respectively for

RMW and CMA even when the rate on errors or the sparsity rate varies. On the other hand,

when we consider the AM and GOS estimators, the test seems unreliable as the empirical rejection

frequencies are far from the nominal level of the test.

Even when we employ the methodology that embeds test asset selection, our conclusions re-

main unchanged. The third row of panel a in Fig. 5 shows the empirical size of the test for the

SPCA estimator. We do not see any particular difference from the results of the other PCA-based

estimators. This might support the hypothesis that the first step in the SPCA estimator fails to

perform consistent test asset selection, and thus screen out all those assets for which the market

factor is spurious (i.e., those assets associated with zero exposure on the market factor). This in

turn produces distortions when conducting inference for the risk premia estimate of MKT that are

similar to the other PCA-based estimators.

What we can infer from these results is that if the loadings are sparse, the betas that are

recovered through PCA are not, in general, sparse. Thus, when we use the estimated loadings on

the unobservable factors to estimate the risk premium, the error-in-variable in our estimated factor

loadings renders inference problematic not only for the sparse factor but also for the other priced

risk factors.

4.5 Local and strong/semi-strong loadings

Finally, in order to analyze the properties of proposed estimators when factors are not pervasive,

we again simulate a 5-factor model from the denoised Fama and French (2015)’s factors, similar to

our benchmark scenario. However, we focus now on understanding the behaviour of t-test when

factors’ strength varies across groups of asset returns. (See Section 3.2)

To put this scenario into context, suppose the dataset is heterogeneous in asset classes, in the

sense that comprehends returns from portfolios of stocks and bonds. Now, we can imagine that

some of the factors that strongly drive bond returns (for example, credit spread) might only weakly

drive the cross-section of returns for the equity portfolio. However, in practice, when we extract

principal components from the variance-covariance matrix of our test asset returns, our estimated
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latent factors might not capture the feature of the low-volatility assets as the principal components

are estimated to maximize the variance of the dataset.

To study this scenario, we then split the test assets into two groups: strong factors (or loadings)

for low-volatility assets and weak(er) loadings for high-volatile assets. In doing so, we do not take a

stance on whether the specification of the volatility dynamics characterizes a particular asset class,

as in our example for credit spread, bonds and stocks. Figures 7 and 8 display the size and power

properties of the asymptotic t-test of the various estimators when the SMB factor is strong for the

bottom half of the assets when ranked in descending order in terms of volatility and weaker for the

remaining assets.16

Figure 7 and Figure 8 about here

As for size, we note that the test performs poorly when θut is relatively low and thus the factor

structure of the empirical errors is not extremely weak. From the plots, it seems that what drives

the performance of the test is not the rate applied to the factor loading, θ, but rather the rate on

the errors, θut . In fact, if we fix the θut , the magnitude of the size of the test is roughly constant

across different specifications of θ.

For the GX estimator, interestingly, we see a U-shape behaviour for the size of the test across

different factors when the θut moves from 0 to 0.5. Only when the error rate is moderate (i.e.,

θut ≈ 0.2), the test has a good size (the test is slightly undersized, with empirical rejection rates

around 4%). Surprisingly, as flattening on the errors increases (θut → 0.5), the rejection rates

under the null of correct risk premia reach at most 30%.

A different pattern arises when we consider the weighted estimator GXLP. In this case, the

plots show a similar pattern as for the GX estimator when the rate on the errors is low, but as

the rate increases, making the empirical signal-to-noise ratio higher, the empirical size converges to

around 6% in magnitude. Despite this compelling convergence toward the nominal level of the test,

we note that when the θut is fixed at 0.35, the test is substantially undersized at values lower than

2% across different factors. Since the results are qualitatively similar when using a larger number

of PCs (p̂ = 9, 12) in the estimation of the risk premia, we do not report them. Regarding SPCA,

16The remaining results for different specifications of the percentile rankings are available upon request.
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the patterns are similar to GX and often much worse for the t-test associated with some factors,

such as the MKT and RMW factors.

Analogous conclusions are reached when looking at the charts corresponding to AM t-test. In

particular, we find that, for values of θut larger than 0.35, the size of the test across simulations

and factors is virtually 0, which raises some suspicions about the reliability of this estimator in

this extreme scenario. The behaviour of the t-test associated with the GOS estimates is behaving

extremely poorly.

The analysis holds when we look at the power property of the test. In general, across estimators

and factors, it seems that the size of the test is of the same order of magnitude as the power (this is

true in particular for the GOS estimator). In conclusion, inference is not generally reliable because

the properties of the test become fairly unstable when the signal-to-noise ratio is low.

5 Dissecting Giglio and Xiu (2021)

Our analysis so far focuses on the behaviour of the asymptotic t-tests for various estimators used

in empirical work in asset pricing. This section points our attention specifically to the methodology

proposed by Giglio and Xiu (2021).

Since the estimation strategy estimates the risk premia on observable factors, γ̂g, as a byproduct

of two components (the latent factor risk premia and the projection coefficient of observable factors

onto latent factors), the goal is to have a clearer picture on whether identification issues could arise

from the matrix of beta exposures to latent factors. If this matrix of risk exposure tends to be

column-rank deficient, or nearly column-rank deficient, identification issues arise and jeopardize

statistical inference. As principal components are usually ordered according to the amount of

variance they represent, higher-ranked PCs might only be weakly correlated with test assets returns

(see the sWF model in Uematsu and Yamagata (2022a), Uematsu and Yamagata (2022b)). In

other words, this could lead to weakly identified risk premia of the estimated latent factor model,

γ̂ presented in Eq. (1). Consider, for example, the full sample of Giglio and Xiu (2021) asset

returns, and estimates the β̂ of model Eq. (1) including in the estimation 12 estimated principal

components. The left chart of Fig.9 displays the frequencies on how many times the {|β̂i|}i=1,..,N

are of order of 10−4 or below. The frequency is remarkably low for the loading associated with the
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1st principal component, but it is nearly 30% for the 7th PC and even reaches almost 50% for the

12th PC.

From a more formal perspective, we apply the sequential test proposed by Onatski (2009) on

their panel of assets. Consider an estimate of the number of latent factors p̂, and (a potential

candidate for) the true value p, the null hypothesis of the test states that the estimated number of

factors is equal to the true one p̂ = p. The alternative hypothesis is that the true number of factors

is between p̂ and p̂+K, with K being a positive integer that is chosen by practitioners. The right

chart of Fig. 9 indicates that the number of latent factors in Giglio and Xiu (2021)’s dataset is 4

(p-values > 0.1). We remind the readers that most of Giglio and Xiu (2021)’s empirical results are

obtained considering p̂ = 7 in the estimation of the risk premia.

Figure 9 about here

What happens to the asymptotics of γ̂g when the exposures are so weak? In particular, when

too many latent factors are estimated, what happens to the Fama and MacBeth (1973)’s estimates

of the latent model? To a certain extent, this is discussed in Giglio et al. (2022), but their focus is

rather on the number of latent factors.

To study this issue, and the distortions of including too many latent factors in the estimation

of the risk premia, we design a Monte Carlo experiment following the procedure outlined in Section

3. We consider returns simulated from a one-factor model: the only factor that drives return is the

MKT factor. In the same vein as in Section 3.2, we apply different convergence rates to the betas

and to the residuals to weaken the original factor structure, so that we can analyze diverse signal-

to-noise ratios. We generate a panel of monthly returns from 400 different simulated (portfolios

of) assets for 1200 periods. We choose such a large T̆ framework because spuriousness is more

severe when the number of time series observations tends to be large.( Kleibergen (2009)) We then

apply the three-step methodology to compute the market risk premium, using, in the time series

regression, 7 estimated principal components (i.e., p̂ = 7) as in Giglio and Xiu (2021). Recall

that the factor structure of the artificial returns is generated by a single factor. This suggests

that the 2nd to 7th PCs should exhibit progressively weaker correlations (possibly nearing spurious

correlations) with test asset returns. Consequently, the risk premia estimates might be affected by

distortions similar to those that arise when a spurious factor is included in the estimation of asset
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pricing models.

In figures 10 and 11, each chart depicts, respectively, the empirical distribution of the risk

premium estimate on the first principal component, γ̂, and estimated market risk premium, γ̂g, as

functions of θ on the y−axis and of the convergence rates of the residuals θut on the x−axis.

Figure 10 and figure 11 about here

We provide the empirical distribution of all the γ′s and η’s (Eq. 1-4) corresponding to the

different PCs in Appendix ??.

From a first look at the plots, we can clearly see that, confirming our findings on the weak/semi-

strong loadings, inference starts to break down for some θ. For instance, when considering θut =

0.05 (top-left) and θ > 0.2, we see that the empirical distribution ceases to be bimodal. The

bimodal behaviour in the distribution of the estimates is not necessarily informative regarding the

spuriousness of the latent factors as it can be the result of a rotation matrix. However, jointly

looking at the unimodality and/or bimodality of the γ′s and η’s might be rather informative in

some cases, e.g., {θut = 0.05, θ > 0.15} (red coloured) for the second PCs (η2, γ2, and γ2 × η2)

in Appendix ??. In this latter example, we see that the empirical distribution of the risk premia

estimates of theMKT factor onto the second PC (i.e, γ2×η2) has fatter tails. This could potentially

corroborate our suspicions in finite sample. As Giglio and Xiu (2021)’s methodology makes use of

the two-step procedure in the latent factor model, it is not immune to the problems of the original

methodology, which might translate into having the estimator’s properties quite sensitive to the

number of (over-)extracted principal components.

6 Conclusions

This paper investigates the properties of the t-tests associated with risk premium estimates in

linear beta-pricing models when the number of assets is large. Our goal is to provide practitioners

with the first comprehensive comparison of the statistical properties of recently proposed large−N

risk premium estimators.

In our Monte Carlo settings, we maintain the cross-sectional structure of the artificial data as

close as possible to the one of the real data and we consider various scenarios that can lead to
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identification problems. Specifically, we analyze situations in which the test asset returns exhibit i)

a strong and pervasive factor structure, ii) a weak and pervasive factor structure, iii) specifications

with spurious factors and with local loadings. In our simulations, we also account for measurement

error issues (proxy variables) and mispricing.

In terms of statistical properties of the t-tests, we find that no estimator consistently outperforms

the others. Thus, a practitioner would need to decide which estimator to use depending on her

priors on the factor that is deemed to be priced and the underlying factor structure. When the

factors are strong and pervasive, the PCA-based estimators are outperforming. Vice versa, when

considering a weak and pervasive factor, Anatolyev and Mikusheva (2021)’s t-test shows good

statistical properties. None of the candidate estimators shows satisfactory performance when the

loadings are sparse, or are local and semi-strong. This result is quite relevant and indicates that the

composition of the panel of asset returns matters. For example, if a practitioner were to work with

a panel of heterogeneous asset classes (e.g., bonds and stocks), the resulting approximate factor

structure would be probably close to the one described in these latter scenarios with sparse or local

factors. Regarding these cases, newly proposed methods may potentially mitigate the documented

size and power distortions, such as Bryzgalova et al. (2023), heteroPCA of Zhang et al. (2022) and

sparsePCA of Cai et al. (2013)) (although the properties of the last ones have not been studied yet

in the asset-pricing context). We leave these investigations for future research.
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Table 1: Simulation results – Giglio and Xiu (2021) methodology This table presents the performance
of the t-statistic in terms of size and power for different numbers of latent factors in the estimation (1 - 11). Data
are simulated according to the 5-factor model of Fama and French (2015). Factors are de-noised using the first 7
principal components. Panel A to D report results for different specifications of N and T .

Panel A: N = 400, T = 400

Size Power

#PC Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

1 0.042 0.159 1.000 1.000 1.000 0.727 0.702 0.690 0.681 0.708
3 0.040 0.131 0.063 0.638 0.189 0.627 0.096 0.358 0.105 0.147
5 0.037 0.044 0.052 0.083 0.046 0.648 0.273 0.301 0.603 0.314
7 0.036 0.050 0.044 0.045 0.042 0.645 0.267 0.260 0.627 0.260
9 0.036 0.048 0.044 0.044 0.043 0.646 0.271 0.258 0.619 0.267
11 0.036 0.047 0.047 0.039 0.046 0.647 0.273 0.255 0.618 0.262

Panel B: N = 400, T = 600

Size Power

#PC Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

1 0.072 0.180 1.000 1.000 1.000 0.880 0.866 0.866 0.864 0.874
3 0.064 0.141 0.084 0.797 0.224 0.801 0.136 0.476 0.129 0.190
5 0.064 0.044 0.050 0.108 0.052 0.825 0.401 0.406 0.773 0.450
7 0.065 0.041 0.049 0.059 0.067 0.824 0.412 0.330 0.796 0.338
9 0.065 0.040 0.050 0.056 0.066 0.824 0.411 0.329 0.790 0.338
11 0.065 0.041 0.053 0.059 0.063 0.825 0.408 0.330 0.788 0.343

Panel C: N = 600, T = 600

Size Power

#PC Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

1 0.068 0.321 1.000 1.000 1.000 0.859 0.840 0.840 0.827 0.846
3 0.052 0.168 0.061 0.909 0.293 0.787 0.099 0.393 0.077 0.123
5 0.051 0.053 0.057 0.196 0.047 0.790 0.417 0.390 0.655 0.448
7 0.051 0.055 0.050 0.060 0.057 0.791 0.393 0.322 0.778 0.426
9 0.052 0.054 0.054 0.054 0.058 0.789 0.395 0.316 0.780 0.417
11 0.052 0.052 0.052 0.051 0.055 0.789 0.394 0.317 0.780 0.407

Panel D: N = 600, T = 1200

Size Power

#PC Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

1 0.072 0.521 1.000 1.000 1.000 0.987 0.986 0.987 0.986 0.987
3 0.065 0.344 0.079 0.996 0.473 0.967 0.101 0.690 0.124 0.200
5 0.066 0.048 0.069 0.298 0.059 0.967 0.664 0.699 0.938 0.749
7 0.064 0.050 0.060 0.059 0.051 0.966 0.622 0.582 0.984 0.744
9 0.066 0.051 0.056 0.049 0.050 0.966 0.623 0.580 0.984 0.735
11 0.066 0.050 0.059 0.049 0.050 0.966 0.619 0.580 0.981 0.741
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Table 2: Simulation results – Lettau and Pelger (2020) weighted methodology This table presents
the performance of the t-statistic in terms of size and power for different numbers of latent factors in the estimation
(1-11). Data are simulated according to the 5-factor model of Fama and French (2015). Factors are de-noised using
the first 7 principal components. Panel A to D report results from different specifications of N and T .

Panel A: N = 400, T = 400

Size Power

#PC Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

1 0.065 0.253 1.000 1.000 1.000 0.781 0.765 0.752 0.735 0.768
3 0.074 0.170 0.764 0.183 0.601 0.499 0.518 0.958 0.811 0.942
5 0.042 0.105 0.110 0.165 0.124 0.639 0.489 0.418 0.860 0.562
7 0.045 0.086 0.076 0.148 0.091 0.659 0.429 0.376 0.737 0.444
9 0.036 0.066 0.046 0.076 0.049 0.639 0.361 0.317 0.509 0.284
11 0.038 0.062 0.052 0.058 0.045 0.641 0.331 0.284 0.461 0.254

Panel B: N = 400, T = 600

Size Power

#PC Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

1 0.093 0.294 1.000 1.000 1.000 0.915 0.909 0.904 0.904 0.911
3 0.090 0.166 0.881 0.208 0.738 0.693 0.642 0.990 0.906 0.979
5 0.064 0.104 0.102 0.191 0.134 0.820 0.643 0.513 0.958 0.692
7 0.062 0.087 0.086 0.168 0.109 0.827 0.594 0.481 0.895 0.603
9 0.063 0.059 0.060 0.080 0.064 0.823 0.508 0.435 0.696 0.407
11 0.062 0.054 0.059 0.061 0.064 0.825 0.471 0.405 0.618 0.342

Panel C: N = 600, T = 600

Size Power

#PC Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

1 0.072 0.597 1.000 1.000 1.000 0.889 0.878 0.882 0.868 0.888
3 0.075 0.195 0.955 0.143 0.825 0.657 0.635 0.999 0.781 0.993
5 0.056 0.220 0.093 0.257 0.190 0.783 0.791 0.524 0.926 0.767
7 0.056 0.141 0.079 0.093 0.097 0.771 0.665 0.454 0.671 0.535
9 0.051 0.115 0.069 0.067 0.074 0.766 0.645 0.448 0.535 0.453
11 0.052 0.072 0.065 0.060 0.046 0.790 0.493 0.390 0.530 0.368

Panel D: N = 600, T = 1200

Size Power

#PC Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

1 0.095 0.829 1.000 1.000 1.000 0.990 0.990 0.990 0.990 0.990
3 0.108 0.174 0.997 0.141 0.970 0.904 0.810 1.000 0.959 1.000
5 0.066 0.284 0.112 0.456 0.307 0.963 0.962 0.813 1.000 0.967
7 0.069 0.145 0.085 0.110 0.127 0.961 0.891 0.742 0.897 0.819
9 0.066 0.121 0.081 0.057 0.084 0.960 0.891 0.743 0.822 0.775
11 0.064 0.059 0.059 0.067 0.067 0.966 0.735 0.677 0.823 0.655
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Table 3: Simulation results – Anatolyev and Mikusheva (2021) and Gagliardini et al. (2016) method-
ologies This table presents the performance of the t-statistic in terms of size and power. Data are simulated according
to the 5-factor model of Fama and French (2015). Factors are de-noised using the first 5 principal components. Panel
A reports the simulation results for the Anatolyev and Mikusheva (2021) meanwhile panel D reports the simulation
results for the unconditional version of the Gagliardini et al. (2016) estimator.

Panel A: Anatolyev and Mikusheva (2021), circular splitting

Size Power

N T Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

400
400 0.055 0.090 0.387 0.422 0.166 0.604 0.433 0.184 0.663 0.230
600 0.054 0.109 0.505 0.458 0.193 0.776 0.603 0.230 0.669 0.227
1200 0.046 0.185 0.646 0.420 0.150 0.973 0.829 0.258 0.614 0.178

600
600 0.052 0.107 0.376 0.448 0.271 0.760 0.560 0.188 0.627 0.302
1200 0.063 0.122 0.532 0.409 0.264 0.955 0.819 0.161 0.541 0.301

Panel B: Gagliardini et al. (2016)

Size Power

N T Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

400
400 0.049 0.193 0.606 0.792 0.802 0.589 0.609 0.375 0.851 0.808
600 0.049 0.142 0.501 0.788 0.801 0.591 0.523 0.297 0.835 0.813

600
600 0.062 0.205 0.625 0.846 0.882 0.754 0.705 0.368 0.871 0.893
1200 0.083 0.347 0.743 0.914 0.931 0.952 0.818 0.496 0.915 0.927
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Table 4: Simulation results – Giglio et al. (2022) methodology This table presents the performance of the t-statistic in terms
of size and power. Data are simulated according to the 5-factor model of Fama and French (2015). Factors are de-noised using the first 5
principal components. Panel A to E report results for different specifications of N and T . Columns 2 to 5 show respectively the minimum,
mean, median, and maximum of the number of assets retained after the supervised asset selection step is performed.

Panel A: N = 50

N0 Size Power

T Min Avg Med Max Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

100 10 27.42 20 50 0.052 0.051 0.051 0.049 0.048 0.228 0.154 0.115 0.068 0.071
200 10 39.20 50 50 0.043 0.036 0.047 0.039 0.045 0.404 0.301 0.161 0.101 0.074
400 10 42.29 50 50 0.052 0.059 0.056 0.050 0.046 0.632 0.493 0.327 0.136 0.154
600 20 44.05 50 50 0.049 0.055 0.045 0.052 0.047 0.779 0.706 0.461 0.212 0.202
1200 20 46.46 50 50 0.047 0.054 0.052 0.061 0.046 0.981 0.932 0.728 0.355 0.304

Panel B: N = 100

N0 Size Power

T Min Avg Med Max Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

100 20 67.38 60 100 0.074 0.053 0.059 0.046 0.042 0.213 0.056 0.251 0.264 0.111
200 20 83.46 100 100 0.048 0.054 0.044 0.053 0.046 0.311 0.057 0.425 0.521 0.183
400 40 91.80 100 100 0.055 0.043 0.056 0.055 0.053 0.593 0.066 0.690 0.814 0.275
600 60 93.84 100 100 0.060 0.060 0.036 0.049 0.045 0.739 0.084 0.891 0.937 0.437
1200 60 97.10 100 100 0.050 0.057 0.050 0.053 0.041 0.955 0.090 0.994 0.998 0.711

Panel C: N = 200

N0 Size Power

T Min Avg Med Max Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

200 40 174.960 200 200 0.065 0.050 0.047 0.062 0.053 0.426 0.180 0.153 0.413 0.173
400 80 179.720 200 200 0.045 0.040 0.039 0.053 0.044 0.663 0.297 0.245 0.714 0.305
600 80 182.800 200 200 0.057 0.051 0.048 0.046 0.059 0.832 0.442 0.357 0.858 0.451
1200 120 187.800 200 200 0.044 0.048 0.063 0.054 0.066 0.984 0.703 0.639 0.991 0.739

Panel D: N = 400

N0 Size Power

T Min Avg Med Max Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

400 160 356.24 400 400 0.037 0.050 0.043 0.050 0.036 0.645 0.264 0.309 0.612 0.330
600 160 366.16 400 400 0.060 0.039 0.047 0.055 0.062 0.827 0.397 0.412 0.796 0.449
1200 240 385.36 400 400 0.054 0.052 0.041 0.038 0.043 0.979 0.689 0.720 0.980 0.785

Panel E: N = 600

N0 Size Power

T Min Avg Med Max Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

600 360 547.80 600 600 0.052 0.054 0.047 0.047 0.050 0.783 0.418 0.401 0.665 0.467
1200 360 574.20 600 600 0.063 0.049 0.050 0.039 0.056 0.966 0.665 0.721 0.941 0.762
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Figure 2: 3D charts for size (or power)

The figure plots an example of size (power) for figures presented in section 4.
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Figure 3: Test size when loadings are weak and pervasive. N = 400, T = 400.

The figure plots the size of the t−statistics for PCA-based estimators (Panel A) and estimators related to observable factors (Panel B) when loadings
are weak and pervasive.
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Figure 4: Test power when loadings are weak and pervasive. N = 400, T = 400.

The figure plots the power of the t−statistics for PCA-based estimators (Panel A) and estimators related to observable factors (Panel B) when loadings
are weak and pervasive.
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Figure 5: Test size when loadings are sparse. N = 400, T = 400.

The figure plots the size of the t−statistics for PCA-based estimators (Panel A) and estimators related to observable factors (Panel B) when some assets
have zero exposure to the Mkt factor.

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

G
X

Mkt

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

SMB

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

HML

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

RMW

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

CMA

θut

0.0
0.1

0.2
0.3

0.4

θ

0.0

0.1

0.2

0.3

0.4

Size

0.0

0.2

0.4

0.6

0.8

V f

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

G
X

L
P

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

θut

0.0
0.1

0.2
0.3

0.4

θ

0.0

0.1

0.2

0.3

0.4

Size

0.0

0.2

0.4

0.6

0.8

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

S
P

C
A

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3
0.0

0.2

0.4

0.6

0.8

θut

0.0
0.1

0.2
0.3

0.4

θ

0.0

0.1

0.2

0.3

0.4

Size

0.0

0.2

0.4

0.6

0.8

(a) Panel A

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

A
M

Mkt

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

SMB

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

HML

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

RMW

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

CMA

θut

0.0
0.1

0.2
0.3

0.4

θ

0.0

0.1

0.2

0.3

0.4

Size

0.0

0.2

0.4

0.6

0.8

V f

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

G
O

S

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

θut

0.1
0.2

0.3
0.4

θ0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

θut

0.0
0.1

0.2
0.3

0.4

θ

0.0

0.1

0.2

0.3

0.4

Size

0.0

0.2

0.4

0.6

0.8

(b) Panel B

40



Figure 6: Test power when loadings are sparse. N = 400, T = 400.

The figure plots the power of the t−statistics for PCA-based estimators (Panel A) and estimators related to observable factors (Panel B) when some
assets have zero exposure to the Mkt factor.
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Figure 7: Test size when loadings are local and strong/semi-strong. N = 400, T = 400.

The figure plots the size of the t−statistics for PCA-based estimators (Panel A) and estimators related to observable factors (Panel B) when the lowest
volatile assets have a strong exposure to the SMB factor.
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Figure 8: Test power when loadings are local and strong/semi-strong. N = 400, T = 400.

The figure plots the power of the t-statistics for PCA-based estimators (Panel A) and estimators related to observable factors (Panel B) when the lowest
volatile assets have a strong exposure to the SMB factor.
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Figure 9: Betas and number of latent factors.

The figure plots, on the left, the frequency of |βi| ≲ 10−4. On the right, the sequential testing of Onatski (2009) (on
the z-axis, its p-value).
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Figure 10: Latent factor risk premium

The figure plots the empirical distribution of the risk premium estimate γ̃ on the first principal component as a
function of θ and θut .
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Figure 11: Market risk premium

The figure plots the empirical distribution of the market risk premium γ̂g as a function of θ and θut . The true market
risk premium is 0.55%.
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Appendix A

A Review of estimation strategies

A.1 Giglio and Xiu (2021)

Let us denote the time-demeaned excess returns matrix, R̄ = R−r̄ι′T , with R as theN×T matrix

of excess returns and r̄ = T−1
∑T

t=1 rt. Equally, we denote the d × T matrix of time-demeaned
observable factors Ḡ, which collects the {gt} vectors of observables.

1. PCA step. The first step is to extract the PCs from the time-demeaned excess returns
matrix, R̄ = R − r̄ι′T , with r̄ = T−1

∑T
t=1 rt, from the T × T matrix (nT )1R̄′R̄. Given a p̂

consistent estimator of the number of (latent) factors, we have the following outputs:

V̂ = T 1/2(ξ1 : · · · : ξp̂), β̂ = T−1R̄V̂ ′

where ξp̂ is the normalized (to norm 1) eigenvector corresponding to the p̂th largest eigenvalues
of the matrix (nT )−1R̄′R̄.

2. Cross-sectional regression step. Run a cross-sectional OLS of R̄ onto the estimated β̂.
We have the following output:

γ̂ = (β̂
′
β̂)−1β̂

′
r̄

which is the risk premia of the estimated latent factor model.

3. Time series regression step. Run a time series regression of gt onto V̂ . We have the
following output:

η̂ = ḠV̂ ′(V̂ V̂ ′)−1

4. Risk premium of the observed. The risk premium for the observed factor, γ̂g is estimated
by:

γ̂g = η̂γ̂

A.2 Giglio et al. (2022)

Let us consider the time-demeaned excess returns matrix, R̄ = R − r̄ι′T , with R as the N × T

matrix of excess returns and r̄ = T−1
∑T

t=1 rt. Equally, we denote the d×T matrix of time-demeaned
observable factors Ḡ, which collects the {gt} vectors of observables.

1. Iteration. The starting values {R̄(0), r̄(0), Ḡ(0)} are respectively {R̄, r̄, Ḡ}.
For an appropriate number of iteration k = 1, 2..., using {R̄(k), r̄(k), Ḡ(k)}:

i



(a) Selection. Select an appropriate choice of subset of test assets Îk ⊂ [N ].
The candidate is:

Îk =
{
i|T−1||(R̄(k))[i]Ḡ

′
(k)||MAX ≥ c(k)q

}
with || · ||MAX being the L∞ norm of A on the vector space, and c

(k)
q the (1−q)th quantile

of (T−1||(R̄(k))[i]Ḡ
′
(k)||MAX).

(b) GX. Follow the first three steps of Giglio and Xiu (2021)’s procedure setting p̂ = 1,
with selected return matrix (R̄(k))[Îk], and Ḡ(k). Denote the estimates coming from the

estimation: {V̂(k), β̂(k), η̂(k), γ̂(k)}
(c) New Input. Obtain {R̄(k+1), r̄(k+1), Ḡ(k+1)} from: R̄(k+1) = R̄(k) − β̂(k)V̂(k), r̄(k+1) =

r̄(k) − β̂(k)γ̂(k), Ḡ(k+1) = Ḡ(k) − η̂(k)V̂(k).

(d) End. Stop at k = p̂, with p̂ based on some proper stopping rule, such as c
(k)
q < c ∈ R.

2. Risk premia. The estimate of the risk premia is γ̂SPCA =
∑p̂

k=1 η̂(k)γ̂(k)

A.3 Lettau and Pelger (2020)

Let us denote R as the N × T matrix of excess returns and r̄ = T−1
∑T

t=1 rt, and consider
the time-demeaned excess returns matrix, R̄ = R − r̄ι′T . Equally, we denote the d × T matrix of
time-demeaned observable factors Ḡ, which collects the {gt} vectors of observables. Let us consider
Q̃ a T × T matrix of given weights.

1. PCA step. The first step is to extract the PCs from the T × T matrix Υ:

Υ = Q̃⊤R⊤(I +
γ

T
11⊤)RQ̃

Given a p̂ consistent estimator of the number of (latent) factors, we have the following outputs:

V̂ = T 1/2(ξ1 : · · · : ξp̂), β̂ = T−1R̄V̂ ′

where ξp̂ is the normalized (to norm 1) eigenvector corresponding to the p̂th largest eigenvalues
of the matrix (nT )−1Υ.

2. Cross-sectional regression step. Run a cross-sectional OLS of R̄ onto the estimated β̂.
We have the following output:

γ̂LP = (β̂
′
β̂)−1β̂

′
r̄

which is the risk premia of the estimated latent factor model.

3. Time series regression step. Run a time series regression of gt onto V̂ . We have the
following output:

η̂LP = ḠV̂ ′(V̂ V̂ ′)−1

4. Risk premium of the observed. The risk premium for the observed factor, γ̂g is estimated
by:

γ̂LP = η̂LP γ̂LP

ii



A.4 Anatolyev and Mikusheva (2021)

Let us denote Ft the K × 1 vector of observed factors, rt the N × 1 vector of excess returns,
and β the N ×K vector of exposures. Let us define the demeaned factors as F̃t = Ft−T−1

∑T
s Fs.

Let us consider the division the set of time indexes into 4 equal non-intersecting subsets Tj , j =
1, ..., 4.

1. For each asset i and each subset j run a time-series regression to estimate the coefficients of
risk exposure:

β̂
(j)

i =

∑
t∈Tj

F̃
(j)
t F̃

(j)′
t

∑
t∈Tj

F̃
(j)
t rit

2. Run an IV regression of r̄i = T−1
∑T

t=1 rit on the regressors x
(1)
i = (β̂

(1)

i , (β̂
(1)

i − β̂
(2)

i )′A′
1)

′

with instruments z
(1)
i = (β̂

(3)

i , (β̂
(3)

i − β̂
(3)

i )′)′, with A1 a non-random kv ×K matrix of rank
kv, where the last is the supposed dimension of the factor structure in the error terms. Let

λ̂
(1)

be the TSLS estimate of the coefficient on regressor β̂
(1)

i .

3. Repeat step (2) three more times exchanging indexes 1 to 4 circularly; that is, the 2nd

regression is an IV regression of r̄i on regressors x
(2)
i = (β̂

(2)

i , (β̂
(2)

i −β̂
(3)

i )′A′
2)

′ with instruments

z
(2)
i = (β̂

(4)

i , (β̂
(4)

i − β̂
(1)

i )′)′; denote the estimate λ̂
(2)

, etc.

4. Obtain the four-split estimate as:

λ̂4S =
1

4

4∑
j=1

λ̂
(j)

Appendix B

B Mispricing

iii



Table B.1: Simulation results –Giglio and Xiu (2021) (Panel A) and Lettau and Pelger (2020) (Panel
B) methodologies This table presents the performance of the t-statistic in terms of size and power for different numbers
of latent factors in the estimation (1, 3, and 5) for several specifications of N and T when the asset pricing model is
misspecified. Data are simulated according to the 5-factor model of Fama and French (2015). Factors are de-noised using
the first 5 principal components. We calibrate the mispricing α̂ from the empirical pricing errors.

Panel A: Giglio and Xiu (2021) methodology

Size Power

N T #PC MKT SMB HML RMW CMA MKT SMB HML RMW CMA

200

200
1 0.071 0.081 0.966 0.999 0.959 0.417 0.389 0.362 0.345 0.376
3 0.084 0.099 0.190 0.233 0.138 0.318 0.211 0.439 0.270 0.303
5 0.070 0.100 0.142 0.134 0.109 0.376 0.232 0.216 0.396 0.258

400
1 0.073 0.087 0.999 1.000 0.999 0.678 0.668 0.652 0.651 0.652
3 0.074 0.142 0.321 0.339 0.206 0.505 0.322 0.674 0.440 0.485
5 0.074 0.147 0.259 0.214 0.187 0.603 0.367 0.370 0.607 0.393

600
1 0.074 0.103 1.000 1.000 1.000 0.842 0.834 0.825 0.826 0.835
3 0.097 0.194 0.432 0.373 0.264 0.647 0.422 0.775 0.541 0.607
5 0.084 0.193 0.301 0.268 0.247 0.754 0.462 0.485 0.738 0.523

400

400
1 0.058 0.258 1.000 1.000 0.999 0.655 0.629 0.629 0.610 0.634
3 0.046 0.180 0.165 0.501 0.261 0.560 0.144 0.390 0.175 0.205
5 0.052 0.109 0.135 0.129 0.115 0.582 0.308 0.351 0.578 0.365

600
1 0.060 0.308 1.000 1.000 1.000 0.811 0.803 0.802 0.791 0.803
3 0.068 0.252 0.212 0.630 0.336 0.725 0.208 0.490 0.221 0.270
5 0.068 0.156 0.181 0.169 0.149 0.747 0.416 0.456 0.737 0.517

1200
1 0.067 0.499 1.000 1.000 1.000 0.981 0.980 0.981 0.979 0.981
3 0.070 0.360 0.291 0.809 0.475 0.941 0.331 0.639 0.321 0.376
5 0.072 0.230 0.272 0.246 0.258 0.957 0.628 0.598 0.884 0.685

600

600
1 0.056 0.577 1.000 1.000 1.000 0.816 0.793 0.803 0.787 0.805
3 0.056 0.276 0.169 0.605 0.371 0.744 0.161 0.420 0.168 0.181
5 0.051 0.130 0.155 0.150 0.153 0.748 0.448 0.429 0.632 0.481

1200
1 0.063 0.819 1.000 1.000 1.000 0.976 0.977 0.976 0.976 0.976
3 0.061 0.455 0.245 0.765 0.502 0.950 0.235 0.586 0.266 0.285
5 0.062 0.187 0.231 0.228 0.217 0.953 0.636 0.620 0.835 0.694

Panel B: Lettau and Pelger (2020) methodology

Size Power

N T #PC MKT SMB HML RMW CMA MKT SMB HML RMW CMA

200

200
1 0.112 0.115 0.954 0.984 0.957 0.426 0.394 0.368 0.342 0.380
3 0.080 0.120 0.368 0.138 0.253 0.325 0.312 0.611 0.601 0.567
5 0.069 0.114 0.118 0.142 0.076 0.381 0.190 0.178 0.407 0.158

400
1 0.080 0.092 0.991 0.997 0.991 0.696 0.686 0.662 0.652 0.665
3 0.075 0.175 0.541 0.231 0.422 0.517 0.496 0.767 0.838 0.817
5 0.071 0.151 0.187 0.249 0.116 0.612 0.311 0.271 0.626 0.261

600
1 0.076 0.111 0.999 0.998 1.000 0.863 0.854 0.845 0.834 0.849
3 0.103 0.244 0.636 0.276 0.535 0.653 0.622 0.837 0.910 0.894
5 0.088 0.207 0.233 0.321 0.158 0.768 0.384 0.375 0.692 0.325

400

400
1 0.068 0.276 0.993 0.996 0.992 0.663 0.643 0.638 0.609 0.641
3 0.056 0.117 0.502 0.127 0.337 0.515 0.432 0.815 0.776 0.800
5 0.056 0.114 0.115 0.121 0.094 0.621 0.277 0.257 0.490 0.238

600
1 0.060 0.330 0.998 1.000 1.000 0.817 0.810 0.805 0.790 0.809
3 0.085 0.167 0.595 0.192 0.450 0.680 0.565 0.864 0.879 0.898
5 0.078 0.154 0.146 0.153 0.093 0.782 0.382 0.338 0.620 0.315

1200
1 0.068 0.507 1.000 1.000 1.000 0.984 0.983 0.983 0.982 0.983
3 0.080 0.269 0.718 0.286 0.628 0.913 0.775 0.931 0.976 0.955
5 0.074 0.226 0.218 0.251 0.158 0.969 0.592 0.453 0.809 0.459

600

600
1 0.056 0.586 0.999 1.000 1.000 0.821 0.801 0.806 0.780 0.809
3 0.065 0.173 0.600 0.168 0.458 0.660 0.617 0.882 0.805 0.902
5 0.055 0.148 0.150 0.092 0.117 0.770 0.449 0.370 0.414 0.318

1200
1 0.064 0.827 1.000 1.000 1.000 0.981 0.977 0.978 0.977 0.979
3 0.081 0.252 0.757 0.283 0.687 0.908 0.795 0.948 0.943 0.983
5 0.065 0.192 0.185 0.140 0.131 0.956 0.650 0.552 0.639 0.470

iv



Table B.3: Simulation results –Anatolyev and Mikusheva (2021) (Panel A) and Gagliardini et al. (2016)
(Panel B) methodologies This table presents the performance of the t-statistic in terms of size and power for several
specifications of N and T when the asset pricing model is misspecified. Data are simulated according to the 5-factor model of
Fama and French (2015). Factors are de-noised using the first 5 principal components. We calibrate the mispricing α̂ from the
empirical pricing errors.

Panel A: Anatolyev and Mikusheva (2021) methodology

Size Power

N T MKT SMB HML RMW CMA MKT SMB HML RMW CMA

200
200 0.058 0.067 0.109 0.104 0.070 0.298 0.154 0.074 0.172 0.080
400 0.048 0.061 0.125 0.093 0.056 0.438 0.179 0.076 0.148 0.069
600 0.044 0.068 0.122 0.093 0.049 0.543 0.195 0.084 0.136 0.051

400
400 0.047 0.064 0.140 0.106 0.077 0.508 0.237 0.071 0.151 0.086
600 0.058 0.075 0.155 0.101 0.066 0.636 0.274 0.084 0.161 0.078
1200 0.050 0.073 0.148 0.072 0.048 0.844 0.253 0.073 0.104 0.052

600
600 0.056 0.085 0.168 0.131 0.108 0.676 0.298 0.089 0.166 0.107
1200 0.058 0.075 0.165 0.114 0.097 0.860 0.314 0.080 0.140 0.094

Panel B: Gagliardini et al. (2016) methodology

Size Power

N T MKT SMB HML RMW CMA MKT SMB HML RMW CMA

200
200 0.112 0.449 0.723 0.859 0.908 0.349 0.535 0.731 0.872 0.908
400 0.159 0.605 0.819 0.921 0.954 0.549 0.662 0.814 0.925 0.954
600 0.214 0.695 0.865 0.943 0.953 0.664 0.719 0.862 0.945 0.961

400
400 0.114 0.496 0.728 0.904 0.949 0.513 0.645 0.696 0.897 0.949
600 0.187 0.624 0.780 0.950 0.962 0.632 0.741 0.754 0.948 0.964
1200 0.339 0.773 0.874 0.969 0.984 0.774 0.821 0.867 0.964 0.988

600
600 0.105 0.515 0.730 0.949 0.948 0.671 0.684 0.675 0.947 0.950
1200 0.248 0.707 0.828 0.968 0.988 0.812 0.783 0.811 0.978 0.980

v



Figure B.1: Test size when loadings are weak/semi-strong and pervasive.N = 400, T = 400.

The figure plots the size of the t−statistics for PCA-based estimators and estimators related to observable factors when loadings are weak and pervasive
and mispricing is introduced.
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Figure B.2: Test power when loadings are weak/semi-strong and pervasive.N = 400, T = 400.

The figure plots the power of the t−statistics for PCA-based estimators and estimators related to observable factors when loadings are weak and pervasive
and mispricing is introduced.
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Figure B.3: Test size when loadings are sparse.N = 400, T = 400.

The figure plots the size of the t−statistics for PCA-based estimators and estimators related to observable factors when loadings are sparse and mispricing
is introduced.
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Figure B.4: Test power when loadings are sparse.N = 400, T = 400.

The figure plots the size of the t−statistics for PCA-based estimators and estimators related to observable factors when loadings are sparse and mispricing
is introduced.
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Appendix C

C Anatolyev and Mikusheva (2021)’s calibrations

In this calibration strategy, we generate returns following Eq.(7)-(8).

In detail, we first estimate the risk premia and the average of the four matrices of exposures
following their proposed methodology based on observable factors. We then calibrate the population

risk premia and exposure to these estimates, respectively λ̆ = 1/4
∑4

i λ̂
AM

i , β̆ = 1/4
∑4

i β̂
AM

i .

Related to the structure error terms (Eq.(8)), after the estimation of the residualized (and
demeaned) component, the u’s, we extract two principal components from it. To ensure these PCs
are to be considered strong (or rather the loading κ’s), we scale their strength to be proportional
to the Frobenius norm of the factor structure of the observable FF5. These PCs constitue the
calibrated unobserved factor structure of the error terms.

Finally, after residualizing the two-factor structures (the observed and unobserved strong ones),
the remaining component dictates the idiosyncratic errors, the e’s, which we used to calibrate the
variance (imposing to be homoskedastic).

Given a number N̆ of observed returns r
(N̆)
t and the estimates coming from Anatolyev and

Mikusheva (2021)’s methodology, the 5 × 1 simulated FF5 factors F ⋄
t , the 2 × 1 simulated latent

factors vt, and the 1×1 idiosyncratic errors e⋄t , are generated from a multivariate normal as follows:F ⋄
t

v⋄t
e⋄t

 ∼ N

( F̄
0(2+1)×1

)
,

Σ̂F 0 0

0 Σ̂v 0
0 0 σ̂e

 , (12)

where F̄ is the 5 × 1 vector of sample mean FF5, Σ̂F is the 5 × 5 sample covariance matrix of
the FF5, Σ̂v is the 2 × 2 sample covariance matrix of the vt and σ̂e is the sample variance of the
idiosyncratic error.

Through Eq.(7)-(8), the realizations of the i of the N̆ simulated returns r⋄i,t is:

r⋄i,t = β̆iλ̆+ β̆i(F
⋄
t − F̄ ⋄

t ) + κ̂iv
⋄
t + e⋄t

This description regards the case dubbed as Strong Factors. For the other scenarios, we follow
analogous configurations to Section 3.2. The unique change is in the Local and Strong/Semi-Strong
Loadings scenario, where we change the exposure related to the HML factor, rather than SMB,
for a broader variety of results. Here below, we present the Weak/Semi-Strong, the Sparse and the
Local and Strong/Semi-Strong Loadings scenarios.

x



Figure C.5: Test size when loadings are weak/semi-strong and pervasive.N = 400, T = 400.

The figure plots the size of the t−statistics for PCA-based estimators (Panel A) and estimators related to observable factors (Panel B) when loadings
are weak and pervasive.
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Figure C.6: Test power when loadings are weak/semi-strong and pervasive.N = 400, T = 400.

The figure plots the power of the t−statistics for PCA-based estimators (Panel A) and estimators related to observable factors (Panel B) when loadings
are weak and pervasive.
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Figure C.7: Test size-adjusted power when loadings are weak/semi-strong and pervasive.N = 400, T = 400.

The figure plots the size-adjusted power of the t−statistics for PCA-based estimators (Panel A) and estimators related to observable factors (Panel B)
when loadings are weak and pervasive.
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Figure C.8: Test size when loadings are sparse.N = 400, T = 400.

The figure plots the size of the t−statistics for PCA-based estimators (Panel A) and estimators related to observable factors (Panel B) when loadings
are sparse.
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Figure C.9: Test power when loadings are sparse.N = 400, T = 400.

The figure plots the power of the t−statistics for PCA-based estimators (Panel A) and estimators related to observable factors (Panel B) when loadings
are sparse.
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Figure C.10: Test size-adjusted power when loadings are sparse.N = 400, T = 400.

The figure plots the size-adjusted power of the t−statistics for PCA-based estimators (Panel A) and estimators related to observable factors (Panel B)
when loadings are sparse.
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Figure C.11: Test size when loadings are local and strong/semi-strong.N = 400, T = 400.

The figure plots the size of the t−statistics for PCA-based estimators and Anatolyev and Mikusheva (2021)’s (Panel A) and Gagliardini et al. (2016)
estimator (Panel B) when loadings are local and strong/semi-strong.
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Figure C.12: Test power when loadings are local and strong/semi-strong.N = 400, T = 400.

The figure plots the power of the t−statistics for PCA-based estimators and Anatolyev and Mikusheva (2021)’s (Panel A) and Gagliardini et al. (2016)
estimator (Panel B) when loadings are local and strong/semi-strong.
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Figure C.13: Test size-adjusted power when loadings are local and strong/semi-strong.N = 400, T = 400.

The figure plots the size-adjusted power of the t−statistics for PCA-based estimators and Anatolyev and Mikusheva (2021)’s (Panel A) and Gagliardini
et al. (2016) estimator (Panel B) when loadings are local and strong/semi-strong.
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